decorationdecoration

La synthèse des protéines chez les eucaryotes

decorationdecoration



La synthèse  des protéines chez les eucaryotes ressemble à celle des procaryotes. Elle s'en distingue toutefois par plusieurs différences. Tout d'abord, je vais citer les points communs avec les procaryotes pour ne plus avoir à y revenir. Comme eux, les eucaryotes commencent par transcrire leur ADN en ARN pour obtenir une copie de travail qui sera traduite. Les ribosomes fonctionnent également de la même façon, même si ceux des eucaryotes sont plus légèrement plus gros (80S au lie de 70). Il y a toutefois trois différences fondamentales :

Pour résoudre ces différents problèmes, la cellule eucaryote a développé différents mécanismes très performants.



La maturation des ARN messagers

Maturation des ARN messagers Juste après la transcription, le messager est une copie conforme du brin d'ADN. Toutefois, la particularité du génome d'eucaryote est d'être en mosaïque, chaque gène est constitué de morceaux codant pour la protéine - les exons - séparés par des morceaux d'ADN ne participant pas au codage de la protéine - les introns. Pour pouvoir synthétiser une protéine, il faudra auparavant supprimer ces introns. Lors de la transcription, ces introns restent dans le code, ils ne seront éliminés que pendant la phase de maturation ultérieure.

Dans un premier temps, les introns vont être éliminés et les exons raccrochés bout à bout pour reconstituer la continuité de la molécule d'ARN. Cette phase s'appelle l'épissage. La façon dont la cellule reconnaît les introns au sein de l'ARN pré-messager encore mal connue. Plusieurs types d'introns sont connus, et au moins l'un d'entre eux, le type II, possède les capacités catalytiques nécessaires pour s'exciser lui même. Plus fort, certains introns de type II codent pour des protéines qui leur permettent de s'insérer ailleurs dans le génome, on a donc un gène caché à l'intérieur d'un autre gène. Les bactéries ne sachant exciser les introns, leurs propriétés d'insertions sont utilisées en génie génétique pour inactiver certains gènes de façon spécifique.

La maturation du messager ne se limite pas à l'épissage. L'ARN sera précédé d'une coiffe et une ARN polymérase va lui ajouter une queue constituée d'une succession de bases adenosyle répétées plusieurs centaines de fois. Ces modifications permettent de protéger l'ARMm contre la dégradation. EN effet, le cytoplasme est bourrée d'enzyme de dégradation de l'ARNm. La présence de la coiffe et de la queue va permttre à l'ARNm de survivre plusieurs dizaines de minutes. Les ARN qui en sont dépourvus, comme ceux des virus, sont eux dégradées en quelques minutes seulement.

Les gènes en mosaiques présentent d'autres intérêts qui vont au delà de juste compléxifier la transcription ou de fournir des outils au biologiste moléculaire. Au moment de l'épissage, la cellule pourra choisir de ne pas intégrer tous les exons dans l'ARNm final, mais seulement quelques uns. Le choix exact des exons dépend du type et de l'état de la cellule, cette faculté est l'épissage alternatif, il permet à un gène de synthétiser plus d'une protéine. Par ailleurs, il semblerait que le découpage du gène en exon ne se fasse pas au hasard, mais qu'il corresponde à peu près aux domaines fonctionnels des protéines. Cela aurait des implications dans la construction des protéines complexes au cours de la phylogenèse.

On peut signaler que les eucaryotes ne sont pas les seuls à posséder des gènes en mosaïques. Ils partagent cette propriété avec les archéobactéries. En fait, il semblerait que ce modèle soit le plus ancien, les génes continus des bactéries étant apparus par simplification pour optimiser leur métabolisme et peut être aussi comme une adaptation aux hautes température. En effet, les ARNm d'eucaryotes ne survivent pas suffisamment longtemps au delà de 60°C pour achever leur maturation. L'ARNm des procaryotes se dégrade à la même vitesse, mais n'ayant pas à subir de maturation, ils peuvent contourner cette dégradation accélérée en utilisant l'ARN sans attendre qu'il soit entièrement synthétisé.


L'adressage des protéines

Les protéines des eucaryotes doivent après leur synthèse atteindre leur cible finale, le cytoplasme, la membrane ou un organite quelconque. Il peut y avoir des membranes à traverser. En fait, c'est le cas pour la plupart des protéines, seules les protéines cytoplasmiques sont produites directement sur leur lieu d'utilisation, mais même pour elle, leur localisation n'est pas due au seul hasard, autrement l'organisation de la cellule serait passablement perturbée.
On peut imaginer un système de translocation qui permettrait aux protéines de passer les membranes qui les empêchent d'atteindre leur cible. Une fois les membranes traversées, il n'y a plus de problème, la localisation dans le compartiment membranaire ou liquidien de l'organite dépend de l'hydrophobicité de la protéine. De tels systèmes de translocation existent en effet. On les trouve sur les membranes des principaux organites : noyau, réticulum, mitochondries, plastes. Grossièrement, ces systémes sont constitués d'un pore qui permet à la protéine en cours de synthèse de traverser la membrane et d'une protéine de contrôle qui selectionne les chaines protéines qui peuvent passer le pore.

Il reste un problème : comment fonctionne le système de contrôle ? Il ne peut pas connaitre toutes les protéines spécifiques d'un organite, elle sont beaucoup trop nombreuses, de plusieurs centaines pour la mitochondrie à plusieurs dizaines de milliers pour le noyau. Sauf bien sûr, si les protéines spécifiques d'un organites ont toutes un point commun. Ce point commun ne se situe pas dans leut structure tridimensionnelles, d'une part cela serait trop contraignant pour leur fonctionnement et leur variété, d'autre part la reconnaissance se produit alors que la synthèse est en cours, à un stade ou la proéeine est encore linéaire. Les chercheurs ont donc eu l'idée d'étudier la séquence de toutes ces protéines et plus spécialement du début de la protéine puisque c'est la seule partie disponible au moment de la synthèse. Ils ont constatés que les ARNm des protéines exportées vers le réticulum codait pour 12 acides aminés de plus que n'en contenait la protéine finale. Ils ont finit par indentifier une séquence consensus qui débute toutes les protéines communes au réticulum : le peptide signal, aussi appelé signal de localisation. Il s'agit d'une séquence consensus, cela signifie que toutes ces protéines ne débutent pas par cette même séquence, mais par une séquence qui lui ressemble fortement, même si quelques acides aminés peuvent être remplacés par d'autres de la même famille. Cette séquence est éliminée très tôt puisqu'en fin de synthèse elle n'existe déjà plus.

Le phénomène qui permet aux protéines d'atteindre leur cible finale est l'adressage. Il fonctionne de la façon suivante : toute protéine spécifique d'un organite débute par une séquence signal ou peptide signal spécifique de la cible. Il peut y en avoir plusieurs à la suite pour affiner la destination. Les protéines de la matrice des mitochondries par exemple ont deux membranes à traverser et donc deux translocations à subir. Pour le réticulum c'est encore plus complexe, une protéine exportée dans sa lumière pourra soit être intrisèque au réticulum, soit au golgi, soit intégrées aux vésicules d'exocytoses, soit aux lysosomes, soit à la membrane, chaque cas correspond à un peptide signal qui suit celui du signal de localisation réticulaire plus général. Dès que le peptide signal est synthétisée, il est reconnu par le système de translocation qui fait traverser le pore à la chaine protéique. Tout de suite après la traversée du pore, il est excisé par un complexe enzymatique. A partir de là, la synthèse se poursuit la chaine étant injectée dans le pore au fûr et à mesure de son élongation.

Il est finalement amusant de constater que la cellule, pour acheminer une protéine à sa destination finale, utilise la même technique que l'homme pour acheminer son courrier : elle marque l'adresse dessus.



Laurent DELEPINE
Création le 30 dec 2000
valid html 4.01! Valid CSS logo xiti